

Abstracts

An Analysis of Four-Frequency Nonlinear Reactance Circuits

D.K. Adams. "An Analysis of Four-Frequency Nonlinear Reactance Circuits." 1960 *Transactions on Microwave Theory and Techniques* 8.3 (May 1960 [T-MTT]): 274-283.

Several advantages of multiple-frequency nonlinear reactance circuits are described in this paper. In particular, a circuit is considered in which a nonlinear reactance couples four basic frequencies: ω_0 , ω_1 , ω_2 , and ω_3 ; these are so related that $\omega_2 = \omega_0 + \omega_1$ and $\omega_3 = \omega_0 - \omega_1$. Here, ω_0 is taken to be the power source or pump. It is found to be desirable to allow for the possible presence of the pump harmonic, $2\omega_0$, and individual cases are characterized by whether $2\omega_0$ is present or not. The major results are as follows: 1) Unlimited amplification gain is theoretically possible at frequencies higher than the pump, by reflecting negative input resistance at ω_2 , but without relying on any effects due to pump harmonics. 2) Unlimited up- or down-conversion gains between ω_1 and ω_2 are theoretically possible in the additional presence of the first pump harmonic, but without reflecting negative input or output resistance. 3) Unlimited amplification gain is theoretically possible at frequencies both lower and higher than the pump fundamental, without reflecting negative input resistance.

[Return to main document.](#)

Click on title for a complete paper.